151 research outputs found

    99mTc-labelled Stealthยฎ liposomal doxorubicin (Caelyxยฎ) in glioblastomas and metastatic brain tumours

    Get PDF
    British Journal of Cancer (2002) 86, 659โ€“660. DOI: 10.1038/sj/bjc/6600093 www.bjcancer.co

    Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity

    Get PDF
    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-ฮณ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, โ€˜in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens

    Lesion detection by [Zr-89]Zr-DFO-girentuximab and [F-18]FDG-PET/CT in patients with newly diagnosed metastatic renal cell carcinoma

    Get PDF
    PURPOSE: The main objective of this preliminary analysis of the IMaging PAtients for Cancer drug selecTion (IMPACT)-renal cell cancer (RCC) study is to evaluate the lesion detection of baseline contrast-enhanced CT, [89Zr]Zr-DFO-girentuximab-PET/CT and [18F]FDG-PET/CT in detecting ccRCC lesions in patients with a good or intermediate prognosis metastatic clear cell renal cell carcinoma (mccRCC) according to the International Metastatic Database Consortium (IMDC) risk model. METHODS: Between February 2015 and March 2018, 42 newly diagnosed mccRCC patients with good or intermediate prognosis, eligible for watchful waiting, were included. Patients underwent CT, [89Zr]Zr-DFO-girentuximab-PET/CT and [18F]FDG-PET/CT at baseline. Scans were independently reviewed and lesions of โ‰ฅ10 mm and lymph nodes of โ‰ฅ15 mm at CT were analyzed. For lesions with [89Zr]Zr-DFO-girentuximab or [18F]FDG-uptake visually exceeding background uptake, maximum standardized uptake values (SUVmax) were measured. RESULTS: A total of 449 lesions were detected by โ‰ฅ1 modality (median per patient: 7; ICR 4.25-12.75) of which 42% were in lung, 22% in lymph nodes and 10% in bone. Combined [89Zr]Zr-DFO-girentuximab-PET/CT and CT detected more lesions than CT alone: 91% (95%CI: 87-94) versus 56% (95%CI: 50-62, pโ€‰=โ€‰0.001), respectively, and more than CT and [18F]FDG-PET/CT combined (84% (95%CI:79-88, pโ€‰<โ€‰0.005). Both PET/CTs detected more bone and soft tissue lesions compared to CT alone. CONCLUSIONS: The addition of [89Zr]Zr-DFO-girentuximab-PET/CT and [18F]FDG-PET/CT to CT increases lesion detection compared to CT alone in newly diagnosed good and intermediate prognosis mccRCC patients eligible for watchful waiting

    Dose-response effect of Gelofusine on renal uptake and retention of radiolabelled octreotate in rats with CA20948 tumours

    Get PDF
    Purpose: Peptide receptor radionuclide therapy using ฮฒ-emitting radiolabelled somatostatin analogues like DOTA,Tyr3-octreotate shows beneficial results in patients suffering from somatostatin receptor overexpressing tumours. However, after high-dose therapy partial renal reabsorption of radiopeptides may lead to nephrotoxicity. Co-infusion of lysine/arginine lowers renal retention of these radiopeptides without affecting tumour uptake. Recently co-administration of Gelofusine has been described to have a comparable kidney-protecting effect in rats. In the present study optimal dosing of Gelofusine co-administration was studied in tumour-bearing rats. Methods: Doses of 40, 80, 120 or 160 mg/kg Gelofusine were co-injected with 15 ฮผg DOTA,Tyr3-octreotate, labelled with 3 MBq111In for biodistribution (24 h post-injection, n=4 per group) and with 60 MBq111In for microSPECT imaging experiments at 3, 24 and 48 h post-injection. An additional group of rats received 80 mg/kg Gelofusine plus 400 mg/kg lysine co-injection. Biodistribution studies were performed both in older (475 g) and younger (300 g) rats, the latter bearing CA20948 tumours. Results: Co-injection of 40 mg/kg Gelofusine resulted in 40-50% reduction of renal uptake and retention of111In-DOTA,Tyr3-octreotate, whereas higher doses further increased the reduction to 50-60% in both groups of rats. Combining Gelofusine and lysine caused 70% reduction of renal uptake. The uptake of radiolabelled octreotate both in somatostatin receptor-expressing normal tissues and tumours was not affected by Gelofusine co-injection. Conclusion: In rats co-injection of 80 mg/kg Gelofusine resulted in maximum reduction of renal retention of111In-DOTA,Tyr3- octreotate, which was further improved when combined with lysine. Tumour uptake of radiolabelled octreotate was not affected, resulting in an increased tumour to kidney ratio

    Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    Get PDF
    Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes.Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, (18)O- and (16)O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change >or=1.5 and p<or=0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARbeta/delta mRNA.Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in type 2 diabetic renal disease. Our observations provide novel insights into potential links between altered lipid metabolism and other gene networks controlled by retinoic acid in the diabetic kidney, and demonstrate the utility of using systems biology to gain new insights into diabetic nephropathy

    Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis

    Get PDF
    For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results
    • โ€ฆ
    corecore